Holonomic quantum fields. II. The Riemann-Hilbert problem
نویسندگان
چکیده
منابع مشابه
The Riemann - Hilbert Problem for Holonomic Systems
The purpose of this paper is to give a proof to the equivalence of the derived category of holonomic systems and that of constructible sheaves. Let X be a paracompact complex manifold and let ® x and 0 x be the sheaf of differential operators and holomorphic functions, respectively. We denote by Mod(^z) the abelian category of left ^^-Modules and by D(^) its derived category. Let ~D^(^x) denote...
متن کاملRenormalization in Quantum Field Theory and the Riemann–Hilbert problem
We show that renormalization in quantum field theory is a special instance of a general mathematical procedure of multiplicative extraction of finite values based on the Riemann–Hilbert problem. Given a loop γ(z), |z| = 1 of elements of a complex Lie group G the general procedure is given by evaluation of γ+(z) at z = 0 after performing the Birkhoff decomposition γ(z) = γ−(z) γ+(z) where γ±(z) ...
متن کاملRenormalization in quantum field theory and the Riemann - Hilbert problem II : the β - function ,
We showed in part I that the Hopf algebra H of Feynman graphs in a given QFT is the algebra of coordinates on a complex infinite dimensional Lie group G and that the renormalized theory is obtained from the unrenormalized one by evaluating at ε = 0 the holomorphic part γ+(ε) of the Riemann–Hilbert decomposition γ−(ε) γ+(ε) of the loop γ(ε) ∈ G provided by dimensional regularization. We show in ...
متن کاملNonlinear Riemann-hilbert Problem for Bordered Riemann Surfaces
Let Σ be a bordered Riemann surface with genus g and m boundary components. Let {γz}z∈∂Σ be a smooth family of smooth Jordan curves in C which all contain the point 0 in their interior. Then there exists a holomorphic function f(z) on Σ smooth up to the boundary with at most 2g +m− 1 zeros on Σ such that f(z) ∈ γz for every z ∈ ∂Σ.
متن کاملA Riemann-Hilbert problem for biorthogonal polynomials
We characterize the biorthogonal polynomials that appear in the theory of coupled random matrices via a Riemann-Hilbert problem. Our Riemann-Hilbert problem is different from the ones that were proposed recently by Ercolani and McLaughlin, Kapaev, and Bertola et al. We believe that our formulation may be tractable to asymptotic analysis.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences
سال: 1979
ISSN: 0034-5318
DOI: 10.2977/prims/1195188429